Chapter 1 Fundamentals of Thermodynamics
1.1 Thermodynamics of Materials Science, Scope and Special Features of the Book
1.2 Concepts of Thermodynamics
1.3 Temperature and Zeroth Law of Thermodynamics
1.4 First Law of Thermodynamics
1.5 Entropy and Second Law of Thermodynamics
1.6 General Thermodynamic Relationships
1.7 Third Law of Thermodynamics
References
Chapter 2 Statistical Thermodynamics
2.1 Basic Concepts
2.2 Classical Statistic Thermodynamics of Independent Particles
2.3 Energy Mode and Energy Levels
2.4 Bose-Einstein and Fermi-Dirac Statistics
2.5 Application of Quantum Statistics
2.5.1 Spatial Configuration of Long Chain Polymers
2.5.2 Statistical Thermodynamics of a Paramagnetic Crystal
2.5.3 Negative Temperature
References
Chapter 3 Heat Capacity, Entropy, and Nanothermodynamics
3.1 Heat Capacity
3.1.1 Relations of Principal Heat Capacities
3.1.2 Magnetic Heat Capacity
3.1.3 Heat Capacity of Lattice Vibration of Solids
3.1.4 Electronic Heat Capacity of Metals
3.2 Entropy
3.2.1 Positional Part of Melting Entropy and Its Evaluation
3.2.2 Contribution of Vibrational Part of Melting Entropy of Semiconductors
3.2.3 Electronic Component of Melting Entropy
3.3 Nanothermodynamics
3.4 Melting Thermodynamics
3.4.1 A Melting Criterion
3.4.2 Existing Models for Size-dependent Melting of Crystals
3.4.3 Size-dependent Melting Thermodynamics of Crystals
3.5 Cohesive Energy
3.5.1 Size-dependent Cohesive Energy of Crystals
3.5.2 Vacancy Formation Energy and Cohesive Energy of Clusters
3.6 Size Effect on Bandgap of II-VI Semiconductor Nanocrystals
References
Chapter 4 Phase Diagrams
4.1 Gibbs Phase Rule and Phase Diagram of Unary System
4.2 Clapeyron. Equation in Condensed State Equilibria
4.3 Solution, Partial Molar Properties and Chemical Potential
4.4 Graphical Representation, Ideal and Regular Solutions
4.5 Equilibrium Conditions of Phases and Phase Diagram of Binary Systems
4.5.1 Complete Miscibility, Continuous Binary Solution Phase Diagram and Related Size Dependence
4.5.2 Immiscibility-Two Mechanisms of Phase Transitions
4.6 On Approximation of Gibbs Free Energy Change of Crystallization
4.7 Bandgap Energy of Binary Nanosemiconductor Alloys
References
Chapter 5 Thermodynamics of Phase Transitions
5.1 Thermodynamic Classification of Phase Transitions
5.2 Landau and Ising Models for the Second-order Phase Transitions
5.2.1 Landau Model
5.2.2 Ising Model and its Applications
5.2.3 Critical Exponent
5.3 Thermodynamics of Martensitic and Bainite Transitions
5.4 Glass Transition
5.4.1 Freezing into Solid State: Glass Formation versus Crystallization
5.4.2 Characteristic Properties of Glass Transition
5.4.3 Size Effect on Glass Transition
5.5 Ferromagnetic and Antiferromagnetic Phase Transitions of Nanocrystals
5.5.1 Size-dependent Ordering Temperatures of Ferromagnetic and Antiferromagnetic Nanocrystals
5.5.2 Thermal Stability in Exchange-biased FMAFM Bilayers
5.5.3 Ferroelectric Phase Transition of Nanocrystals
5.5.4 Superconductive Phase Transition of Nanocrystals
References
Chapter 6 Thermodynamics of Interfaces
6.1 Point Defect Thermodynamics
6.2 Line Defects Thermodynamics
6.3 Thermodynamics of Interfaces
6.3.1 Thermodynamic Description of Surface Free Energy of Liquids and Solids
6.3.2 Thermodynamics of Surface Stress and Intrinsic Stress
6.3.3 Real Surface: Reconstruction and Relaxation
6.3.4 Equilibrium of Fluid Droplets and Solid Particles
6.3.5 Wulff Construction and Adsorption on Solid Surfaces
6.4 Solid-liquid Interface Energy
6.4.1 Bulk Solid-liquid Interface Energy and That at Melting Points
6.4.2 Size Dependence of Solid-liquid Interface Energy
6.4.3 Nucleus-liquid Interface Energy
6.5 Solid-solid Interface Energy
6.6 Solid-vapor Interface Energy or Surface Energy
6.6.1 Bulk Surface Energy of Elementary Solids
6.6.2 %v0 of Several Ceramics with NaC1 Structure
6.6.3 Size-dependent Surface Energy of Solids
6.7 Liquid-vapor Interface Energy or Surface Tension
6.7.1 Bulk Surface Tension and Its Temperature Coefficient
6.7.2 Determination of Lv0(Tm) and Lv0(Tm) Values and Lv0 (T) and v0 (T) Functions
6.7.3 Size Dependence of Liquid-vapor Interface Energy
6.8 Applications of Size-dependent Interface Energy
6.8.1 Thermodynamic Phase Stability of Nanocarbons
6.8.2 Static Hysteresis of Solid Transition of CdSe Nanocrystals
6.8.3 Critical Layer Number and Critical Misfit of Epitaxia] Grown Metallic Thin Films
6.8.4 Reconstruction Possibility of fcc Metallic Surfaces at Room Temperature
References
Index