登入帳戶  | 訂單查詢  | 購物車/收銀台( 0 ) | 在線留言板  | 付款方式  | 運費計算  | 聯絡我們  | 幫助中心 |  加入書簽
會員登入 新用戶登記
HOME新書上架暢銷書架好書推介特價區會員書架精選月讀2023年度TOP分類瀏覽雜誌 臺灣用戶
品種:超過100萬種各類書籍/音像和精品,正品正價,放心網購,悭钱省心 服務:香港台灣澳門海外 送貨:速遞郵局服務站

新書上架簡體書 繁體書
暢銷書架簡體書 繁體書
好書推介簡體書 繁體書

十月出版:大陸書 台灣書
九月出版:大陸書 台灣書
八月出版:大陸書 台灣書
七月出版:大陸書 台灣書
六月出版:大陸書 台灣書
五月出版:大陸書 台灣書
四月出版:大陸書 台灣書
三月出版:大陸書 台灣書
二月出版:大陸書 台灣書
一月出版:大陸書 台灣書
12月出版:大陸書 台灣書
11月出版:大陸書 台灣書
十月出版:大陸書 台灣書
九月出版:大陸書 台灣書
八月出版:大陸書 台灣書

『簡體書』离子通道研究方法精要(导读版)

書城自編碼: 1743215
分類:簡體書→大陸圖書→自然科學生物科學
作者: [美]康恩
國際書號(ISBN): 9787030306029
出版社: 科学出版社
出版日期: 2011-04-01
版次: 1 印次: 1
頁數/字數: 606/950000
書度/開本: 16开 釘裝: 精装

售價:HK$ 377.6

我要買

 

** 我創建的書架 **
未登入.


新書推薦:
大家小书 译馆 骑士:历史与文化
《 大家小书 译馆 骑士:历史与文化 》

售價:HK$ 56.4
没有一种人生是完美的:百岁老人季羡林的人生智慧(读完季羡林,我再也不内耗了)
《 没有一种人生是完美的:百岁老人季羡林的人生智慧(读完季羡林,我再也不内耗了) 》

售價:HK$ 56.9
日耳曼通识译丛:复原力:心理抗逆力
《 日耳曼通识译丛:复原力:心理抗逆力 》

售價:HK$ 34.3
海外中国研究·未竟之业:近代中国的言行表率
《 海外中国研究·未竟之业:近代中国的言行表率 》

售價:HK$ 135.7
我们为何建造(城市与生态文明丛书)
《 我们为何建造(城市与生态文明丛书) 》

售價:HK$ 89.7
算法经济 : 商业逻辑与人类生活的智能演进(生动呈现AI与算法的创新应用与商业价值)
《 算法经济 : 商业逻辑与人类生活的智能演进(生动呈现AI与算法的创新应用与商业价值) 》

售價:HK$ 79.4
家书中的百年史
《 家书中的百年史 》

售價:HK$ 79.4
偏爱月亮
《 偏爱月亮 》

售價:HK$ 45.8

 

建議一齊購買:

+

HK$ 708.0
《活细胞成像(第二版)》
+

HK$ 407.1
《共聚焦显微镜技术(导读版)》
+

HK$ 289.1
《神经科学研究技术》
內容簡介:
离子通道领域研究热点的快速增长,证明其在维持生命状态过程中起到的基础性作用。分子生物学和物理学是离子通道研究中极为重要的两种方法,本书基于这一角度选取了部分有代表性的研究方法。章节作者在阐述某种研究方法时,使用了大量的图表并与其他方法进行比较,提供一些窍门和捷径使其可以适用于其他研究体系。本书语言简明易懂,适合初涉离子通道领域的研究者,对有经验的研究人员也极具参考价值。
關於作者:
Director,Office of Research Advocacy OHSU
Senior Scientist,Divisions of Reproductive Sciences and
Neuroscience ONPRC
Professor,Departments of Pharmacology and Physiology,Cell and
Developmental Biology,and Obstetrics and Gynecology OHSU
Beaverton,Oregon
目錄
撰稿人
前言
第一部分 组装
1.离子通道的组装
Ⅰ.引言
Ⅱ.策略和方法
参考文献
第二部分 遗传学
2.通过酵母双杂交系统鉴定离子通道关联的蛋白质
Ⅰ.引言
Ⅱ.酵母双杂交系统的原理
Ⅲ.材料和方法
Ⅳ.酵母双杂交系统的局限、前景和展望
附录:溶液
参考文献
第三部分 电生理学
3.囊性纤维化跨膜转运调节因子氯离子通道的膜片钳研究
Ⅰ.引言
Ⅱ.表达体系的选择
Ⅲ.膜片钳技术
Ⅳ.CFTR通道的通透性
Ⅴ.CFTR氯离子通道的调控

Ⅵ.DRSCAN:一种用于长时间记录分析的兼容性程序
附录
参考文献
4.秀丽隐杆线虫C. elegans神经元的紧密封接全细胞膜片钳
Ⅰ.引言
Ⅱ.概述
Ⅲ.用于原位电生理的C.
elegans的制备
Ⅳ.亚微米开度的膜片钳的构成
Ⅴ.溶液
Ⅵ.膜片钳设置
Ⅶ.GFP标记的神经元记录
Ⅷ.紧密封接的全细胞记录
Ⅸ.小细胞膜片钳记录的阐释
Ⅹ.电压的空间控制
Ⅺ.前景
Ⅻ.总结
参考文献
5.门控电流
Ⅰ.引言
Ⅱ.门控电流的研究
Ⅲ.单通道电荷
Ⅳ.检测中的问题
Ⅴ.分离中的问题
Ⅵ.电压钳
Ⅶ.记录步骤
Ⅷ.门控电流的记录
Ⅸ.基本门控事件
Ⅹ.频域门控电流的记录
参考文献
6.离子通道通透性质的确定
Ⅰ.引言
Ⅱ.单离子电势
Ⅲ.离子通道的选择性
Ⅳ.离子孔道的分类
Ⅴ.孔道阻断研究
Ⅵ.孔道占有情况的确定
Ⅶ.结论
参考文献
第四部分 表达体系
7.通过塞姆利基森林病毒SFV和杆状病毒表达配体门控的离子通道
Ⅰ.引言
Ⅱ.病毒DNA或RNA的生成
Ⅲ.宿主细胞的选择和培养
Ⅳ.病毒的扩增和滴定
Ⅴ.实验参数的优化

Ⅵ.杆状病毒和SFV表达离子通道的应用
Ⅶ.结论
参考文献
8.由重组腺病毒介导的编码离子通道和突触功能相关分子的基因在神经系统中的表达
Ⅰ.引言
Ⅱ.重组腺病毒的准备
Ⅲ.技术
Ⅳ.钾离子通道的表达

Ⅴ.腺病毒在急性海马脑片生理学中的应用
Ⅵ.未来的方向
参考文献
9.异源离子通道的瞬时表达
Ⅰ.更新
Ⅱ.引言
Ⅲ.方法
Ⅳ.结果
Ⅴ.总结
参考文献
第五部分 模型模拟
10.离子通道的电脑模拟和建模
Ⅰ.引言
Ⅱ.基础统计方法
Ⅲ.势能

Ⅳ.非线性Poisson-Boltzmann方程
Ⅴ.模拟步骤总结
参考文献
第六部分 物理
11.测定离子通道活性的荧光技术
Ⅰ.引言
Ⅱ.实验步骤
Ⅲ.药理验证试验
Ⅳ.钙离子高度应答性离子通道
Ⅴ.钙离子中度应答性离子通道
Ⅵ.钙离子低度应答性离子通道

Ⅶ.基于荧光染料测定离子通道活性的钙离子浓度试验的局限
Ⅷ.基于荧光染料钙离子浓度试验的优势
参考文献
12.分析离子通道结构和功能的配体结合方法
Ⅰ.修改文稿介绍
Ⅱ.引言
Ⅲ.方法比较
Ⅳ.方法
Ⅴ.荧光配体结合试验
Ⅵ.配体结合分析
Ⅶ.热动力循环分析
参考文献
13.二维结晶、冷冻电镜和成像分析决定的膜蛋白三维结构
Ⅰ.引言

Ⅱ.电子冷冻晶体学的膜蛋白结构分析的步骤
Ⅲ.图谱阐释
Ⅳ.结论
参考文献
14.毛细管电泳的电压钳生物感受器
Ⅰ.引言
Ⅱ.毛细管电泳
Ⅲ.断裂电泳毛细管的构成
Ⅳ.细胞制备
Ⅴ.毛细管电泳膜片钳记录
Ⅵ.双电极电压钳记录
Ⅶ.总结
参考文献
15.离子通道作为监控脂双层与膜蛋白相互作用的工具:短杆菌肽作为分子力的传递者
Ⅰ.近期发展
Ⅱ.引言
Ⅲ.蛋白质构象改变和脂双层扰动
Ⅳ.膜扰动和通道功能
Ⅴ.膜变形的能量
Ⅵ.载体与通道报告蛋白的选择
Ⅶ.分子力传递者

Ⅷ.测定ΔGsupI→IIsupsubbilayersub和现象的弹力常数
Ⅸ.结论
参考文献
第七部分 纯化和重组
16.上皮囊性纤维化跨膜转运调节因子氯离子通道的纯化和重构
Ⅰ.更新
Ⅱ.引言

Ⅲ.CFTR在Sf9-杆状病毒系统中的表达
Ⅳ.CFTR的溶解和纯化
Ⅴ.CFTR的重组
Ⅵ.重组CFTR通道功能特征的估测
参考文献
17.天然和克隆的通道在平面脂双层的重组
Ⅰ.更新
Ⅱ.引言和概述

Ⅲ.大鼠肌肉T-小管细胞膜:一种Ksup+supsubcasub通道和Nasup+supsubvsub通道的可靠资源

Ⅳ.天然组织中各种类型离子通道的制备和重组

Ⅴ.克隆和异源表达的通道重组到平面脂双层的方法
参考文献
第八部分 第二信使和生化方法
18.配体门控离子通道的蛋白质磷酸化
Ⅰ.引言

Ⅱ.配体门控离子通道磷酸化的生化性质分析
Ⅲ.配体门控离子通道磷酸化的功能作用
Ⅳ.结论
参考文献
19.离子通道关联蛋白的分析
Ⅰ.引言
Ⅱ.总体考虑
Ⅲ.重组蛋白的体外结合
Ⅳ.全长蛋白质在异源细胞中的整合
Ⅴ.离子通道和关联蛋白在体内的共定位

Ⅵ.天然组织中离子通道和关联蛋白的免疫共沉淀
Ⅶ.结论
参考文献
20.离子通道的第二信使调控植物膜片钳
Ⅰ.更新
Ⅱ.引言
Ⅲ.暴露膜
Ⅳ.植物细胞与动物细胞膜片钳的对比
Ⅴ.离子通道的第二信使调控
Ⅵ.结论性评语
附录
参考文献
第九部分 特殊离子通道
21.ATP敏感性钾离子通道
Ⅰ.引言
Ⅱ.药物合成
Ⅲ.组织培养
Ⅳ.转染操作
Ⅴ.铷外流检测
Ⅵ.膜的分离
Ⅶ.光标操作
Ⅷ.受体溶解
Ⅸ.SUR1的部分纯化
Ⅹ.额外纯化步骤
Ⅺ.沉降
Ⅻ.结合检测
参考文献
22.研究机械力门控通道的简化快速压力钳技术
Ⅰ.引言
Ⅱ.简化压力钳的机械排布
Ⅲ.压力钳的电子控制
Ⅳ.构建的一些实践经验
附录
参考文献
23.抑制性甘氨酸受体的异源表达和纯化
Ⅰ.引言
Ⅱ.哺乳动物脊索中甘氨酸受体的纯化
Ⅲ.甘氨酸受体的异源表达
Ⅳ.HEK293细胞中瞬时表达
Ⅴ.2×BBS
Ⅵ.杆状病毒系统
参考文献
24.Aquaporin水分子通道蛋白的功能分析
Ⅰ.引言
Ⅱ.红血球AQP1蛋白的纯化
Ⅲ.AQP1在酵母中的表达
Ⅳ.AQP1重组到蛋白脂质体中
Ⅴ.AQP1蛋白脂质体的水渗透

Ⅵ.用简并寡核苷酸PCR对Aquaporins的同源克隆
Ⅶ.表达AQP1蛋白的蛙卵的水渗透
参考文献
第十部分 毒素和其他膜活性化合物
25.离子通道的Conus多肽探针
Ⅰ.引言
Ⅱ.Conus探针的生化概述

Ⅲ.处理Conus多肽中的一些实践经验
参考文献
26.蝎毒作为研究钾离子通道的工具
Ⅰ.引言

Ⅱ.蝎毒液中钾离子通道多肽抑制剂的纯化

Ⅲ.通过重组技术合成钾离子通道抑制剂多肽
Ⅳ.钾离子通道抑制性多肽的放射性标记
Ⅴ.受体结合研究
Ⅵ.总结
参考文献
27.利用平面脂双层快速筛选膜活性化合物
Ⅰ.更新
Ⅱ.引言
Ⅲ.一种新的双层膜系统
Ⅳ.平面脂膜的设置和区室
Ⅴ.材料
Ⅵ.平面脂膜灌流技术的应用
参考文献
28.离子通道抗体
Ⅰ.引言
Ⅱ.人类疾病中自发产生的抗体
Ⅲ.配体门控的受体
Ⅳ.电压门控型离子通道
Ⅴ.商业产品
参考文献
索引
內容試閱
PART I
Assembly
CHAPTER 1
Assembly of Ion Channels
ZuFang Sheng and Carol Deutsch
Department of Physiology
University of Pennsylvania
Philadelphia
Pennsylvania
USA
I.Introduction
II.Strategies and Methods
A.Identification of Putative Regions Involved in Intersubunit
Interactions
B.Characterization of Intersubunit Interactions
C.Determination of Subunit Stoichiometry and History During
Assembly
References
I.Introduction
Most ion channels are multisubunit conglomerates.Because synthesis
and assembly
of many different types of pore-forming subunits occur in a single
cell,how
do the right subunits find each other to give the correct
stoichiometry and avoid
scrambling to channel homogeneity?This problem is even more
striking if we
consider the vast number of nonchannel transmembrane proteins made
simultaneously
in a cell.Assembly is a multistep process that requires specific
intersubunit
recognition events.Each of these steps may include intermediate
folded conformations
of subunits andor intermediate subunit stoichiometries.Such
possibilities
have not been explored for most types of ion channels,including Kt
channels,nor
is it known which regions of the subunits actually interact during
each assembly
step.
In some cases,the NH2-terminal domains of ion channels can function
as
specific recognition motifs between subunitsBabila et al.,1994;Li
et al.,1992;
Shen et al.,1993;Verrall and Hall,1992;see also Xu and Li,1998,this
volume,but
it is not clear that such elements contribute to stabilization of
the mature multimeric
protein or whether additional subunit–subunit interactions
between
transmembrane segments provide the energy to shift the equilibrium
in a
lipid bilayer toward multimerization and the final,mature channel
that functions
in the plasma membrane.Most voltage-gated Kt channels are
homotetrameric
membrane proteins,each subunit containing six putative
transmembrane segments,
S1–S6.It is not clear what holds the tetramer together;intersubunit
covalent
linkages do not appear to be responsibleBoland et al.,1994.In
these
channels the cytoplasmic NH2 terminus contains a recognition
domain,T1
“first tetramerization”,that tetramerizes in vitro and confers
subfamily specificity
Li et al.,1992;Shen and Pfaffinger,1995;Shen et al.,1993;Xu et
al.,1995.
However,in the native channel there are also intramembrane
associationIMA
sites in the central core of voltage-gated Kt channels that provide
sufficient
recognition and stabilization interactions for channel assembly,and
disruption
of one or more of these interactions may suppress channel
formationSheng et al.,
1997;Tu et al.,1996.The relative contributions of different domain
interactions
e.g.,T1 and IMAmay vary from channel isoform to isoform.What are
these
T1 and IMA domains in the native full-length Kt channel,and what
are their
relative contributions to channel formation?
Identification of the recognition and stabilization motifs in the
primary sequence
of channel proteins is a good beginning to understanding channel
assembly;
however,it still leaves many questions unanswered.How specific are
these intersubunit
interactions?How strong are they? At which stage in assembly are
subunits
integrated into the membrane?What are the spatial and temporal
events involved
in channel assembly?What is the subunit stoichiometry of the
channel?What is the
history of the subunits during assembly?Is recruitment of subunits
a random
event?What is the nature of the subunit pool?Where is it
located?When are
subunits recruited into multimeric channels,and where?We can
address these
issues both biochemically and biophysically,as described in the
next section,
using a variety of in vitro translation systems and in vivo
expression systems.
The in vitro translation systems include rabbit reticulocyte
lysateRRLand
wheat germ agglutininWGAsystems,which contain cellular components
necessary
for protein synthesistRNA,ribosomes,amino acids,and
initiation,elongation,
and termination factorsand are capable of a variety of
posttranslational
processing activitiesacetylation,isoprenylation,proteolysis,and
some phosphorylation
activity.Signal peptide cleavage and core glycosylation can be
reconstituted
and studied by adding canine pancreatic microsomal membranes to
the
translation reaction.These systems permit studies,for example,of
transcriptional
and translational control,association of proteins,and their
membrane integration.
However,the translation efficiency of high molecular weight
proteins100,000is
relatively poor,and it is not clear that all aspects of in vivo
processing have been
reconstituted.Thus,caution must be used in extrapolating findings
with the in vitro
system to in vivo events.
The in vivo expression system most used for study of channel
function and
assembly has been Xenopus oocytesRudy and Iverson,1992.Mammalian
cells
are also used frequently and involve DNA transfection
techniquesRudy and
Iverson,1992.Oocytes typically require injection of channel
mRNAtypically
50 nloocyte;0.1–100 ng mRNAoocyte.This system is an intact
cell system that
expresses at high levels for both electrophysiological and
biochemical measurements,
which can be done simultaneously in parallel samples.Both the
oocyte and
a mammalian T-cell expression system are described later,as well as
the methods
used to study channel protein synthesis,integration into
membranes,and
oligomerization.
Broadly defined,assembly also involves
trafficking,posttranslational modification,
and localization of channel proteins in specific subcellular
compartments,as
well as the aforementioned processes of recognition and
associationoligomerization.
This chapter,however,focuses only on strategies and methods that
can be
used1to identify regions of a protein that are potentially
involved in intersubunit
interactions during assembly of the pore-forming unit of ion
channels,2to
determine the strength,kinetics,spatial,and temporal
characteristics of the intersubunit
interactions,and3to determine the subunit stoichiometry and
history of
subunits during assembly.For some cases we illustrate the
approaches by describing
experiments in our laboratory involving a voltage-gated Kt
channel,Kvl.3.
However,these strategies and methods can be,and have been,used for
other
multimeric channels.
II.Strategies and Methods
The strategies used to address the issues just stated entail either
direct or indirect
determinations of various aspects of subunit association.The former
category
includes primarily biochemical approaches;the latter makes use of
functional
readouts.These strategies are protein based,yet each can have
additional strategies
at the DNA level.For example,strategies that entail constructing
genes that link
multiple channel domains in tandem,swapping channel domains to
create chimeras,
andor deleting or mutating domains can be combined with the
protein
assays to elucidate mechanisms of channel assembly.
A.Identification of Putative Regions Involved in Intersubunit
Interactions
Intersubunit association can be assessed by direct and indirect
methods as
described in the following subsections.To discover which regions of
the channel
interact across subunit boundaries,physical association between
channel subunits
or between peptide fragments of a channel and the full-length
channel protein must
be demonstrated.This can be done directly by1immunoprecipitation
of one
member of a complex by antibody against the other
member,2cross-linking
interacting proteins using bifunctional reagents,or3binding
assays of interacting
peptides.Such binding assays have been employed to show that Kt
channel
subunits,or parts of these subunits,multimerize both in vitro and
in vivoBabila
et al.,1994;Li et al.,1992;Shen and Pfaffinger,1995;Shen et
al.,1993.But these
studies have been concerned primarily with cytoplasmic NH2-terminal
interactions.
We describe one of these methods used in our
laboratory,namely,immunoprecipitation.
One important caveat concerning the association of peptide
fragments of a channel with the channel protein is that it is not
clear that such
association faithfully reflects native associations between
full-length subunits
in situ.For instance,constraints imposed on a segment of the
channel in the
context of the full-length folded protein may lead to different
interactions with
another subunit compared with the isolated truncated channel
peptide fragment.
Therefore,for a transmembrane segment,it is ultimately important to
determine
not only whether these interactions occur in the native protein but
also the
topology and orientation of the peptide fragment.
1.Immunoprecipitation
This method requires the use of antibodiesantiserato a protein or
a peptide
construct.If the antibodies to native epitopes are not sufficiently
good,an epitope
tag may be used;c-mycMEQKLI-SEEDLEvans et al.,1985is excellent
for this
purpose.Such nonnative epitopes,however,should be inserted into a
primary
sequence at a nonperturbing distance15 amino acidsfrom
putative topogenic
determinants.The first step in this approach involves making the
appropriate
plasmid DNA either for use in transfections for subsequent in vivo
expression,or
for in vitro transcription to produce mRNA for subsequent use in
either in vivo or
in vitro experiments.Standard methods of restriction enzyme
analysis,agarose gel
electrophoresis,and bacterial transformation are used for these
studies.Plasmid
DNA are purified using Qiagen columnsValencia,CA,and capped mRNA
is
synthesized in vitro from linearized templates using Sp6 or T7 RNA
polymerase
Promega,Madison,WI.
For in vitro immunoprecipitation experiments,proteins are
translated in vitro
with [35S]methionine2 ml25 ml translation mixture; 10 mCiml
DupontNEN
Research Products,Boston,MAin RRLcommercial preparations are
available
from Promega,and from MBI Fermentas,Amherst,NY;laboratory
preparations
can be made according to Jackson and Hunt,1983;Walter and
Blobel,1983in the
presence1.8 ml membrane suspension25 ml translation mixtureor
absence of
canine pancreatic microsomal membranesPromega or MBI
Fermentas,according
to the Promega Protocol and Application Guide.Two proteins that are
proposed
to interact are then cotranslated.Relative mRNA concentrations
should be
determined from the efficiencies of each construct to yield protein
ratios that are
desired.To maximize coimmunoprecipitation,microsomal membranes
should be
used in limiting concentration compared with the total mRNA
concentration.The
translation reaction can be visualized and quantitated using
SDS–PAGE and
phosphor imaging.
To perform immunoprecipitation from an in vitro translation
systemRRL,
microsomal membranes,1–5 ml of cell-free translation products is
mixed in 400 ml
of buffer A [0.1 M NaCl,0.1 M TrispH 8.0,10 mM EDTA,and
1%vv

 

 

書城介紹  | 合作申請 | 索要書目  | 新手入門 | 聯絡方式  | 幫助中心 | 找書說明  | 送貨方式 | 付款方式 香港用户  | 台灣用户 | 大陸用户 | 海外用户
megBook.com.hk
Copyright © 2013 - 2024 (香港)大書城有限公司  All Rights Reserved.