登入帳戶  | 訂單查詢  | 購物車/收銀台( 0 ) | 在線留言板  | 付款方式  | 運費計算  | 聯絡我們  | 幫助中心 |  加入書簽
會員登入 新用戶登記
HOME新書上架暢銷書架好書推介特價區會員書架精選月讀2023年度TOP分類瀏覽雜誌 臺灣用戶
品種:超過100萬種各類書籍/音像和精品,正品正價,放心網購,悭钱省心 服務:香港台灣澳門海外 送貨:速遞郵局服務站

新書上架簡體書 繁體書
暢銷書架簡體書 繁體書
好書推介簡體書 繁體書

八月出版:大陸書 台灣書
七月出版:大陸書 台灣書
六月出版:大陸書 台灣書
五月出版:大陸書 台灣書
四月出版:大陸書 台灣書
三月出版:大陸書 台灣書
二月出版:大陸書 台灣書
一月出版:大陸書 台灣書
12月出版:大陸書 台灣書
11月出版:大陸書 台灣書
十月出版:大陸書 台灣書
九月出版:大陸書 台灣書
八月出版:大陸書 台灣書
七月出版:大陸書 台灣書
六月出版:大陸書 台灣書

『簡體書』Fracture Mechanics of Piezoelectric and Ferroelectric Solids(压电与铁电体的断裂力学)

書城自編碼: 1998746
分類:簡體書→大陸圖書→工業技術電工技術
作者: 方岱宁
國際書號(ISBN): 9787302283638
出版社: 清华大学出版社
出版日期: 2012-10-01
版次: 1 印次: 1
頁數/字數: 416/596000
書度/開本: 16开 釘裝: 精装

售價:HK$ 377.6

我要買

 

** 我創建的書架 **
未登入.


新書推薦:
美器:中国古代物质文化九讲
《 美器:中国古代物质文化九讲 》

售價:HK$ 193.2
谜托邦:故事新编
《 谜托邦:故事新编 》

售價:HK$ 90.9
百年“巨富长”——建筑中的人文与历史
《 百年“巨富长”——建筑中的人文与历史 》

售價:HK$ 82.8
鲁迅“传统”与余华的小说创作
《 鲁迅“传统”与余华的小说创作 》

售價:HK$ 101.2
性心理学(一部剖析性心理的百科全书,一本好读实用的性学指南)
《 性心理学(一部剖析性心理的百科全书,一本好读实用的性学指南) 》

售價:HK$ 64.4
抢人:数字时代如何快速吸纳精准人才(美国商业图书大奖AXIOM年度图书)
《 抢人:数字时代如何快速吸纳精准人才(美国商业图书大奖AXIOM年度图书) 》

售價:HK$ 66.7
给好奇者的黑洞简史
《 给好奇者的黑洞简史 》

售價:HK$ 67.9
债务机器:美国的银行政策与个人陷阱
《 债务机器:美国的银行政策与个人陷阱 》

售價:HK$ 79.4

 

建議一齊購買:

+

HK$ 300.9
《压电——该技术的发展和未来(影印版)》
+

HK$ 233.2
《压电结构与器件分析(英文版)》
+

HK$ 203.6
《力电耦合物理力学计算方法》
+

HK$ 262.6
《压电材料高等力学(英文版)》
內容簡介:
《压电与铁电体的断裂力学英文版》是关于压电/铁电吲体断裂力学的专著,从理论分析、数值计算和实验观察三个方面比较全面和系统地阐述了压电/铁电固体的断裂问题,强调静态、动态和界面断裂问题的力学提法以及力电耦合效应所导致的电致断裂的物理本质。《压电与铁电体的断裂力学》的上要特色是:详细描述了压电/铁电材料的基本方程以及与断裂问题相关的一般解.以图的形式提供了大量的数值计算结果和实验结果,用简洁的语言解释了复杂的力电耦合断裂问题。《压电与铁电体的断裂力学》的这些特色使固体力学、材料科学、应用物理和机械工程领域的渎者能够很容易抓住问题的物理本质和把握压电/铁电固体断裂力学的研究现状。
目錄
chapter 1 introduction
1.1 background of the research on fracture mechanics of
piezoelectricferroelectric materials
1.2 development course and trend
1.3 framework of the book and content arrangements
references
chapter 2 physical and material properties of dielectrics
2.1 basic concepts of piezoelectricferroelectric materials
2.2 crystal structure of dielectrics
2.3 properties of electric polarization and piezoelectricity
2.3.1 microscopic mechanism of polarization
2.3.2 physical description of electric polarization
2.3.3 dielectric constant tensor of crystal and its symmetry
2.4 domain switch of ferroelectrics
2.4.1 electric domain and domain structure
2.4.2 switching of electric domain and principles for domain
switch
references
chapter 3 fracture of piezoelectricferroelectric materials
experiments and results
3.1 experimental approaches and techniques under an
electromechanical coupling field
3.1.1 high-voltage power supply
3.1.2 high voltage insulation
3.1.3 moire interferometry
3.1.4 digital speckle correlation method
3.1.5 method of polarized microscope
3.1.6 experimental facilities
3.2 anisotropy of fracture toughness
3.3 electric field effect on fracture toughness
3.4 fracture behavior of ferroelectric nano-composites
3.5 measurement of strain field near electrode in double-layer
structure of piezoelectric ceramics
3.6 observation of crack types near electrode tip
3.7 experimental results and analysis related to ferroelectric
single crystal out-of-plane polarized
3.7.1 restorable domain switch at crack tip driven by low electric
field
3.7.2 cyclic domain switch driven by cyclic electric field
3.7.3 electric crack propagation and evolution of crack tip
electric domain
3.8 experimental results and analysis concerning in-plane polarized
ferroelectric single crytal
3.8.1 response of specimen under a positive electric field
3.8.2 crack tip domain switch under low negative electric
field
3.8.3 domain switching zone near crack tip under negative
field.
3.8.4 evolution of electric domain near crack tip under altemating
electric field
references
chapter 4 basic equations of piezoelectric materials
4.1 basic equations
4.1.1 piezoelectric equations
4.1.2 gradient equations and balance equations
4.2 constraint relations between various electroelastic
constants
4.3 electroelastic constants of piezoelectric materials
4.3.1 coordinate transformation between vector and tensor of the
second order
4.3.2 coordinate transformation of electroelastic constants
4.3.3 electroelastic constant matrixes of piezoelectric crystals
vested in 20 kinds of point groups
4.4 goveming differential equations and boundary conditions of
electromechanical coupling problems
4.4.1 governing differential equations of electromechanical
coupling problems
4.4.2 boundary conditions of electromechanical coupling
references
chapter 5 general solutions to electromechanical coupling
problems of piezoelectric materials
5.1 extended stroh formalism for piezoelectricity
5.1.1 extended stroh formalism
5.1.2 mathematical properties and important relations of stroh
formalism
5.2 lekhniskii formalism for piezoelectricity
5.3 general solutions to two-dimensional problems of transversely
isotropic piezoelectric materials
5.3.1 the general solutions to the anti-plane problems of
transversely isotropic piezoelectric materials
5.3.2 the general solutions to the in-plane problems of
transverselyi sotropic piezoelectric materials--stroh method
5.3.3 the general solutions to the in-plane problems of
transverselyi sotropic piezoelectric materials--lekhniskii
method
5.4 general solutions to three-dimensional problems of
transverselyi sotropic piezoelectric materials
references
chapter 6 fracture mechanics of homogeneous piezoelectric
materials
6.1 anti-plane fracture problem
6.2 in-plane fracture problem
6.3 three dimensional fracture problem
6.3.1 description of problem
6.3.2 derivation ofelectroelastic fields
6.4 electromechanical coupling problem for a dielectric elliptic
hole
6.4.1 anti-plane problem of transversely isotropic piezoelctric
material containing dielectric ellipic holes
6.4.2 generalized plane problems of piezoelectric materials
containing a dielectric elliptic hole
6.5 influence on crack tip field imposed by electric boundary
conditions along the crack surface
references
chapter 7 interface fracture mechanics of piezoelectric
materials
7.1 interracial cracks in piezoelectric materials under uniform
electromechanical loads
7.1.1 tip field of interracial crack
7.1.2 full field solutions for an impermeable interfacial
crack
7.2 effect of material properties on interfacial crack tip
field
7.3 green''s functions for piezoelectric materials with
aninterfacial crack
7.3.1 brief review of green''s functions for
piezoelectricmaterials
7.3.2 green''s functions for anti-plane interracial cracks
references
chapter 8 dynamic fracture mechanics of piezoelectric
materials
8.1 scattering of elastic waves in a cracked piezoelectrics
8.1.1 basic concepts concerning propagation of elastic wavein a
piezoelectrics
8.1.2 dominant research work on elastic wave scattering causedby
cracks in piezoelectrics
8.1.3 scattering of love wave caused by interficial cracks
inlayered elastic half-space of piezoelectrics
8.2 moving cracks in piezoelectric medium
8.2.1 anti-plane problems of moving interficial cracks
8.2.2 the plane problem of moving cracks
8.3 transient response of a cracked piezoelectrics to
electromechanicalimpact load
8.3.1 anti-plane problems of cracked piezoelectrics under
impactelectromechanical loads
8.3.2 transient response of crack mode-lli in
strip-shapedpiezoelectric medium
8.3.3 in-plane problems of cracked piezoelectrics under the
actionof impact electromechanical loads
8.4 dynamic crack propagation in piezoelectric materials
8.4.1 dynamic propagation of conducting crack mode-iii
8.4.2 dynamic propagation of dielectric crack mode-m
references
chapter 9 nonlinear fracture mechanics of ferroelectric
materials
9.1 nonlinear fracture mechanical model
9.1.1 electrostriction model
9.1.2 dugdale model strip saturation mode
9.2 domain switching toughening model
9.2.1 decoupled isotropy model
9.2.2 anisotropy model for electromechanical coupling
9.3 nonlinear crack opening displacement model
9.3.1 definition of crack opening displacement
9.3.2 crack opening displacement 8o caused by piezoelectric
effect
9.3.3 effect a8 of domain switching on crack opening
displacement
9.4 interaction between crack tip domain switching of batio3 single
crystal and crack growth under electromechanical load
9.4.1 experiment principle and technology
9.4.2 experimental phenomena
9.4.3 analysis of domain switching zone
9.4.4 ferroelastic domain switching toughening
references
chapter 10 fracture criteria
10.1 stress intensity factor criterion
10.2 energy release rate criterion
10.2.1 total energy release rate criterion
10.2.2 mechanical strain energy release rate criterion
10.3 energy density factor criterion
10.4 further discussion on stress intensity factor criterion
10.5 cod criterion
references
chapter 11 electro-elastic concentrations induced by electrodes
inpiezoelectric materials
11.1 electroelastic field near surface electrodes
11.1.1 electroelastic field near stripe-shapedsurface
electrodes
11.1.2 electroelastic field near circular surface electrodes
11.2 electroelastic field near interface electrode
11.2.1 general solution to the interface electrode of anisotropic
piezoelectric bi-materials
11.2.2 electroelastic field near the interface electrode in
transversely isotropic piezoelectric bi-materials
11.3 electroelastic field in piezoelectric ceramic-electrode
layered structures
11.3.1 laminated structure model, experimental set-up andfinite
element calculation model
11.3.2 numerical calculation and experimentally
measuredresults
references
chapter 12 electric-induced fatigue fracture
12.1 experimental observation and results
12.1.1 electrically induced fatigue experiment by cao andevans
1994
12.1.2 electrically induced fatigue experiment of samplescontaining
penetrating cracks
12.2 phenomenological model
12.2.1 model i
12.2.2 model ii
12.3 domain switching model
12.3.1 electrically induced fatigue investigated by means ofcrack
tip intensity factor
12.3.2 investigation of electrically induced fatigue by means
ofcrack opening displacement cod
references
chapter 13 numerical method foranalyzing fracture of
piezoelectricand ferroelectric materials
13.1 generalized variation principle
13.1.1 generalized variation principle of linear
elasticmechanics
13.1.2 variation principle of electromechanical coupling
problem
13.2 finite element method for piezoelectric material
fracture
13.2.1 basic format of finite element for piezoelectric
fracture
13.2.2 calculation example: the electromechanical field around the
circular hole in an infinite piezoelectric matrix:
13.2.3 calculation example: model of piezoelectric material with
two-sided notches
13.3 meshless method for piezoelectric material fracture
13.3.1 basic format of electromechanical coupling meshless
method
13.3.2 some problems about electromechanical coupling meshless
method
13.3.3 numerical example
13.4 nonlinear finite element analysis of ferroelectric material
fracture
13.4.1 solution of field quantity with given electric domain
distribution
13.4.2 new electric domain distribution and finite element
iterative process determined by field quantity
13.4.3 calculation example: ferroelectric crystal containing
insulating circular hole plus vertical electric field
13.4.4 calculation example: ferroelectric crystal containing
insulating crack plus electric field e = 0.72ec perpendicular to
crack surface
references
appendix the material constants of piezoelectric ceramics

 

 

書城介紹  | 合作申請 | 索要書目  | 新手入門 | 聯絡方式  | 幫助中心 | 找書說明  | 送貨方式 | 付款方式 香港用户  | 台灣用户 | 大陸用户 | 海外用户
megBook.com.hk
Copyright © 2013 - 2024 (香港)大書城有限公司  All Rights Reserved.